Title

Relations and Orders in Discrete Mathematics

Properties, Equivalence, Partial Orders, Lattices, and Higman's Lemma - CS205M

Khushraj Madnani September 8, 2025

What is a Relation?

- A binary relation R on a set A is a subset of $A \times A$.
- Notation: aRb means $(a, b) \in R$.
- Example: On $A = \{1, 2, 3\}$, $R = \{(1, 1), (1, 2), (2, 3)\}$.

Reflexive Property

- **Definition**: $\forall a \in A, aRa$.
- Example: Equality (=) on \mathbb{Z} : n = n.
- Counterexample: Less than (<) is not reflexive.

Symmetric Property

- **Definition**: If *aRb*, then *bRa*.
- Example: "Is sibling of" (if A is sibling of B, vice versa).
- Counterexample: "Parent of" is not symmetric.

Transitive Property

- **Definition**: If aRb and bRc, then aRc.
- Example: "Ancestor of" (A to B, B to C \implies A to C).
- Counterexample: "Friend of" may not be transitive.

Antisymmetric Property

- **Definition**: If aRb and bRa, then a = b.
- Example: \leq on numbers (if $a \leq b$ and $b \leq a$, a = b).
- Counterexample: "Sibling" is not antisymmetric.

Implies A = B

Closure of Relations

- **Definition**: Smallest relation containing *R* with property *P*.
- Reflexive Closure: Add (a, a) for all $a \in A$.
- Example: $R = \{(1,2)\}$, reflexive closure adds (1,1),(2,2).

Symmetric and Transitive Closures

- Symmetric Closure: Add (b, a) for each (a, b).
- Transitive Closure: Add all implied paths (R*).
- Example: $R = \{(1,2),(2,3)\}$, transitive closure adds (1,3).

Equivalence Relations

- **Definition**: Reflexive, symmetric, transitive.
- Example: Congruence mod n: $a \equiv b \pmod{5}$.
- Induces equivalence classes: $[a] = \{b \mid aRb\}.$

Partitions

- **Definition**: Disjoint, non-empty subsets whose union is *A*.
- Equivalence relation \leftrightarrow partition via classes.
- Example: Integers by parity (evens, odds).

Partial Orders

- Definition: Reflexive, antisymmetric, transitive (poset).
- Example: \subseteq on power set of $\{a, b\}$.
- Hasse Diagram: Shows order without transitive edges.

Greatest Lower Bound (GLB)

- **Definition**: Largest c s.t. $c \le a$ and $c \le b$ (meet, $a \land b$).
- Example: In power set, $\{a\} \land \{b\} = \emptyset$.
- In \mathbb{Z} with \leq , GLB(4,6) = min(4,6).

Incomparable Elements

- **Definition**: a, b where neither $a \le b$ nor $b \le a$.
- Example: {a} and {b} in power set.
- **Antichain**: Set of pairwise incomparable elements.

Least Upper Bound (LUB)

- **Definition**: Smallest c s.t. $a \le c$ and $b \le c$ (join, $a \lor b$).
- Example: In power set, $\{a\} \vee \{b\} = \{a, b\}$.
- May not exist (e.g., \mathbb{Q} and $\{x \mid x^2 < 2\}$).

Maximal vs Maximum Elements

- Maximal: No element strictly greater.
- Maximum: ≥ all elements (unique).
- Example: Two tops in poset \implies maximal, no maximum.

Lattices

- Definition: Poset where every pair has LUB and GLB.
- Example: Power set $(\lor = \cup, \land = \cap)$.
- **Bounded**: Has top (\top) and bottom (\bot) .

Fixed Points

- **Definition**: a where f(a) = a for monotone f on poset.
- **Knaster-Tarski**: Monotone *f* on lattice has fixed points.
- Example: Program semantics (loop invariants).

Well-Quasi-Ordering (WQO)

- Definition: Quasi-order (reflexive, transitive) with no infinite antichain or descending chain.
- Example: \mathbb{N} with \leq is well-ordered.
- Importance: Termination guarantees.

Higman's Lemma

- Statement: Σ* (words over finite alphabet) is WQO under subsequence embedding.
- Subsequence: Letters of *w* appear in *v* in order.
- Example: "abc" embeds in "axbycz".

Multiset Ordering

- **Definition**: *M* < *N* if *M* obtained by replacing elements in *N* with smaller ones.
- Example: $\{a, a, b\} > \{a, c\}$ if c < b, a < b.
- Terminates: No infinite descending chains.

$$\{a, a, b\}$$
 $>$ $\{a, c\}$

Proving Multiset Termination

- Map multisets to sorted words in Σ^* (WQO alphabet).
- Multiset reduction ⇒ subsequence embedding.
- Higman's Lemma: No infinite descending chains.
- Application: Termination in term rewriting.

$$\{a,a,b\}$$
 \mapsto aab $>$ ac

Summary

- Relations: Reflexive, symmetric, transitive, antisymmetric.
- Equivalence: Partitions via classes.
- Posets: GLB, LUB, maximal/maximum, lattices.
- WQO: No bad sequences; Higman's for words, multisets.

References

- Rosen, "Discrete Mathematics and Its Applications."
- Davey & Priestley, "Introduction to Lattices and Order."
- Higman, G. (1952). Ordering by divisibility in abstract algebras.
- https://en.wikipedia.org/wiki/Well-quasi-ordering